

Matthias Renka November 07-08, 2018 33. Hofer Vliesstofftage



### **CONTENT**

The formaldehyde challenge - Development on next generation latex binder



- 1. Synthomer at glance
- 2. Review 2017 regulations / crosslinking / analytics
- 3. SBR for PES roofing felts new development
- 4. SA for fleece wallpaper new development
- 5. QuickShield 1545 for glass mesh EIFS / glass non woven
- Conclusion / Summary



### **SYNTHOMER AT GLANCE**

**Leading in Speciality Polymers** 



### Top 5

Global supplier of emulsion and speciality polymers



€ 1.67 bn

Group revenue



25

**Production sites** 





2800

**Employees** 





### **SYNTHOMER AT GLANCE**

**Our Locations** 





### **REVIEW 2017**

### Regulations / Crosslinking





#### Cross-linking – high performance by polymer networks Key for may high performance <u>Latices</u> – chemical bonding & finishes Concept of cross-linking Creation of chemical bonds leading to an increase of the molecular weight and the formation of polymer networks Cross-linking A) Cross-linking during the polymer synthesis >> monomers with 2 or more double bonds B) Cross-linking during the polymer film drying

#### Allows ideal wetting and bonding to the fiber substrate Cross-linking leads to high performance on:

by functional group within the polymer backbone

- elasticity and resilience
- heat resistance
- tensile / bonding strength
- resistance against solvents, acids, chemicals combination of soft handle & none blocking features better abrasion resistance
- improved wrinkle behavior



synthomer





### **REVIEW 2017**

#### **Analytics**



### FA Analytics (2) - A method overview for finished Textiles A detailed look into the most common tests used for Textiles

|  | method                   | MITI                                        | dised for Textiles       |                            |                 |             | Takines     |                                                                                                                                                            |  |
|--|--------------------------|---------------------------------------------|--------------------------|----------------------------|-----------------|-------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|  | Extraction               | Law 1041                                    | Japan<br>Law 112         | AATO                       |                 |             | "   PIM 120 |                                                                                                                                                            |  |
|  | conditions  FA detection | 100 ml water<br>1h, 25 ° C<br>wetting agent | 25 ° C                   | 20 h, 49° C<br>sample cage | 20min,<br>25° C | 20 h, 49° C | 1 h, 40° C  | hydrolysis level will<br>increase with extraction<br>time and temperature<br>Shirley I < MITI < Law 112<br>LAW 112 ~ DIN ISO < AATCC<br>AATCC ~ Shirley II |  |
|  |                          | Photomass                                   | Acetylaceton photometric |                            |                 |             |             |                                                                                                                                                            |  |
|  | Other stand              | ards                                        |                          | , metometric               | photometric     | photometric | photometric |                                                                                                                                                            |  |

- Chinese Standard T -18585-2008 most demanding due to steam distillation → 2.5 g sample (textile or Latex).
- Total FA content VDL RL03 (paint industry) steam distillation at low pH -> 10 g sample (sample or Latex).



#### FA Analytics (3) - FA release at processing

TEGEWA method as reference point for FA emissions / FA exhaust emissions by VDI 3862

#### **TEGEWA Method**

- FA emissions at processing of aqueous based systems · 1g liquid sample evenly dispersed over 3 g of sand
- heating for 5 min at 160 ° C
- emissions are carried over to 2 water filters with 50 and 25 ml water using a nitrogen flow of 200ml/min
- · IR heating to prevent condensation in the tube connections
- . FA analytics via Acetylaceton method in the collected water made up to 250 ml volume

#### VDI 3862 (part 6)

#### Determination of FA in exhaust gases

- · 2 water filters (collectors) with 30 ml each
- exhaust gas flow rate 1 L / min (pump system) for 30 min
- · typically 30 min measurement time
- heated sampling probe and dust filter (prevent condensation)
- · FA analytic via Acetylaceton method
- · recording of sample volume, time, temperature,
- · cross sensitivities at higher levels of NH2 and with SO2



TEGEWA test set un





General information / Product requirements / Manufacturing process



#### **Current state of art manufacturing process**

- staple fibres or spun bond non woven
- Foulard impregnation foam or liquid
- addition of up to 20% thermoset resin (FA) => 2-K System

### **Product requirements**

- high water resistance
- high tensile strength (TS)
- stiff handle w/o kink or crack at flex test
- high aging stability
- outstanding thermo-dimension stability (TDS) at 200°C
- broad compatibility with thermo-set resins

### **Current state of art product offering**

self cross-linking SA or XSBR Latex (FA emitting); TG: ≥ 30°C; PS: ≈130 nm; TSC: ≈50%

### Target of new development

self crosslinking Latex without FA emission & no addition of thermoset resin => 1-K System





TDS & TS as most demanding product features



### **Thermo dimension stability**



10min at 200°C, 5min conditioning at RT

### **Targets (DIN 18192)**

- dimensional elongation MD max. 1,5%
- dimensional shrink CD max. 1,5%
- test series with 4kg load
- => additional non DIN tests performed

#### **Tensile strength**





- ultimate tensile strength
- tensile strength at 5%, 10%, 15% elongation
- hot tensile strength (180°C)
- wet tensile strength
- => Additional tests performed



Very good performance on tensile strength



#### TENSILE STRENGTH AT RT IN MD



- PES non woven, 160gsm
- 20% coating weight d/d
- two market standards with resin
- new development w and w/o resin
- ⇒ High performance on tensile strength fulfilled by all products
- ⇒ Only new developed product in 1K system feasible
- ⇒ Only new developed product FA free



surpassing DIN standard for TDS even as 1K-System



# THERMO DIMESION STABILITY AT 200°C AND 4KG LOAD



- PES non woven, 160gsm
- 20% coating weight d/d
- two market standards with resin
- new development w and w/o resin
- ⇒ High performance on thermo dimension stability at 200°C fulfilled by all products
- ⇒ Only new developed product in 1K system feasible
- ⇒ Only new developed product FA free



### SA for fleece wallcovers

General information / Product requirements / Manufacturing process



### **Manufacturing process**

- similar to conventional paper production but with glass or other synthetic fibers
- additionally Foulard impregnation afterwards or
- addition of binder to pulp
- 15-20% binder uptake

#### **Product requirements**

- low water uptake / good wet tear strength
- absolute block free behaviour
- lightfast / low yellowing
- good filler tolerance (TiO<sub>2</sub>)
- good fiber bonding / self crosslinked

#### **Current state of art product offering**

self cross-linking SA (FA emitting)

### **Target of new development**

self crosslinking Dispersion without FA emission => interior application



## SA for fleece wallcovers

Whole product range from soft to hard / all FA-free self crosslinkable



|                            | New development | Revacryl X 9020H | Revacryl AE 4522 |
|----------------------------|-----------------|------------------|------------------|
| TSC [%]                    | 50              | 50               | 50               |
| pH value                   | 8,5             | 8,5              | 7,5              |
| Viscosity [mPas]           | 300             | 250              | 350              |
| T <sub>G</sub> [°C]        | -16             | 4                | 22               |
| MFFT [°C]                  | 0               | 0                | 18               |
| Water absorption (24h) [%] | 12              | 11               | 10               |
| tensile strength [N/mm²]   | 5               | 6                | 9                |



## Litex QuickShield 1545 for glass mesh

General information / Product requirements / Manufacturing process



#### Outside wall without ETICS:

Poor heat insulation: Temperature differences lead to draughts

– no living comfort



#### Outside wall with ETICS:

Low temperature differences – pleasant indoor climate, significant savings in heating energy



- outstanding alkali resistance for all relevant standards: ETAG 004, DIN EN 13496, DIBt, EIMA 105.01
- wide range of handle from very soft to hard tailor-made solutions
- very good workability / runability
- non displaceable / good node fixation
- non blocking finishes
- good compatibility with thermoset resins





## Litex QuickShield 1545 for glass mesh

results on demanding ETAG norm / efficiency potentials



- comparable tensile strength on ETAG vs. market standard
- formaldehyde-free self crosslinking
- significant cost saving potentials in production process
  - lower surface temperature (crosslinking at RT)
  - reduced exhaust air temperature
  - up to 30% faster impregnation speed
- significate increased productivity
  - low foaming behaviour
  - low deposit formation
- ⇒ currently in tests for glass non woven material for insulation
- ⇒ first results on tensile strength after ETAG promising





## **Conclusion / Summary**

The formaldehyde challenge - Development on next generation latex binder



- same performance achieved in various application with FA-free self crosslinked Latex
- Synthomer green technology is transferable through different chemistries (SBR / SA / PA)
- beside ecological benefit of FA-free self crosslinking often new added values
  - reduced crosslinking temperature = reduced energy needed
  - complexity reduction in production processes = 1K solution
  - increased line speed = high productivity
- => Economically benefits



Matthias Renka November 07-08, 2018 33. Hofer Vliesstofftage