FlexTEG Flexibler thermoelektrischer Generator auf Basis bedruckbarer Vliesstoffstrukturen

M.Sc. Liana Sinowzik

Sächsisches Textilforschungsinstitut e.V.

Inhalt

- 1. Motivation
- 2. Thermoelektrische Grundlagen
- 3. Zielstellung
- 4. Lösungsweg
- 5. Ergebnisse
- 6. Anwendungen
- 7. Zusammenfassung
- 8. Ausblick

Motivation

Motivation - wirtschaftlich

- Energierückgewinnung aus Abwärme
- Öffnung neuer Anwendungsfelder
- Massenfertigungstaugliche Technologie
- → durch thermoelektrische Generatoren (TEG)
- → energieautarke Elektronik/Sensorik
- → Vliesstoffherstellung/Drucktechnologie

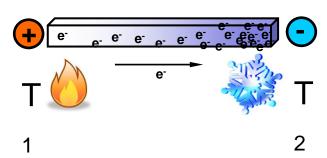
stfi

SÄCHSISCHES TEXTIL FORSCHUNGS INSTITUT e.V.

Motivation – technologisch

- Entwicklung von polymeren Materialien für TE
- Entwicklung eines neuartigen TEG-Konzepts

- intrinsisch p- und n-leitende Polymere
- flexibel durch Vliesstoffe


Copyright: STFI

 \rightarrow

Thermoelektrische Grundlagen

Die Umwandlung von Wärme in Strom mittels thermoelektrischem Generator basiert auf dem von Thomas Seebeck 1821 entdeckten gleichnamigen **Seebeck-Effekt**, welcher die Erzeugung einer elektrischen Spannung U_{therm} zwischen den Kontaktstellen zweier leitenden Materialien beschreibt, sofern diese einer Temperaturdifferenz ΔT=T_{heiss}-T_{kalt} unterliegen.

$$ZT = \frac{\alpha^2 \sigma}{\kappa} T$$

 σ : spez. el. Leitfähigkeit α : Seebeck Koeffizient κ : therm. Leitfähigkeit

T: abs. Temperatur

SÄCHSISCHES TEXTIL FORSCHUNGS INSTITUT e.V.

Thermoelektrische Grundlagen

Herkömmliche TEGs

- Trägermaterial: vorstrukturierte, starre Keramiken
- Trägermaterial: Polymerfolien
 - + relativ einfach zu verarbeiten, flexibel und ungiftig
 - gedruckten Schichten im µm-Bereich (Multilagendruck)

Quelle: TU Dresden, 2016

Übliche Prozesskette für die Fertigung von TEGs

5 Verbindung mit den Deckkontakten und dei oberen Platte

Quelle: TU Dresden, 2016

auf eine Keramikplatte

und Kontaktierung

4 Montage der Quader

Thermoelektrische Grundlagen

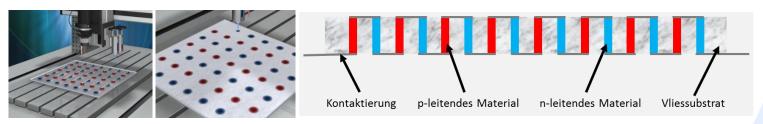
Vorteile von ...

...Polymeren für die Thermoelektrik

- Ungiftiges Material
- Keine seltenen Elemente (Preis)
- Geringe Wärmeleitfähigkeit
- Flexibel (normal sind meist sehr spröde Legierungen)
- Gute Prozessierbarkeit (Verarbeitung als Paste / Flüssigkeit)

... Vliesstoffen als Basismaterial

- Flexibilität, z.B. Einsatz von TEGs an Rohrleitungen
- hohe Toleranz gegenüber mechanischen Schwingungen
- hohe Toleranz gegenüber thermischen Zyklen
- Konfektionierbarkeit
- Massenfertigungstaugliches Herstellungsverfahren



Zielstellung

(1) Entwicklung eines bedruckbaren textilen Materials -

Vliesstoff, welcher von einem thermoelektrischen Polymer benetzt und in Dickenrichtung durchtränkt wird (Stützstruktur für das TE-Material)

(2) Entwicklung von elektrisch leitfähigen Pasten und einem geeigneten Auftragssystem

Quelle: TU Dresden, 2016 Quelle: TU Dresden, 2016

Lösungsweg

Thermoelektrisches Material

Druck- und Trocknungsprozess

Thermoelektrischer Generator

Herstellung Strukturvliesstoffe

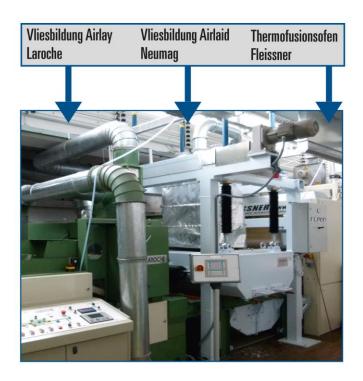
Untersuchung zur Verfestigung

Vor-/ Nachbehandlung Stoffe

Herstellung Versuchsmuster

SÄCHSISCHES TEXTIL FORSCHUNGS INSTITUT e.V.

Lösungsweg


Anforderungen an den Vliesstoff

Merkmal	Anforderung
Material	Polyester
Struktur	offenporig
Oberfläche	glatt, unversiegelt/offenporig
Dicke	≥ 5 mm
Lösungsverhalten	hydrophil, polar
Lösemittelbeständigkeit	p-Polymer gegen Dimethylsulfoxid (DMSO)
	n-Polymer gegen Methanol
Temperaturbeständigkeit	p-Polymer bis 150 °C
	n-Polymer bis 160 °C
Luftdurchlässigkeit	Optimum zwischen Luftdurchlässigkeit/Porengrößenverteilung und
	Ein-/Durchdringen der Druckpasten

Vliesbildung Airlaid

> 70 % PES 1,7 dtex / 6 mm 30 % PES-Biko 3 mm

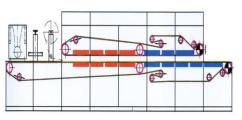
Muster	Flächenmasse	Dicke
	in g/m²	
AD 03	268	4,75
AD 04	277	5,01
AD 05	374	5,12

Vliesbildung Krempeltechnik und Vernadelung

SÄCHSISCHES TEXTIL FORSCHUNGS INSTITUT e.V.

- Spezifikation Nadeln 18x18x40x3,5 R222 G3037 (Groz-Beckert KG)
- 2 Nadelbretter alternierend betrieben (Einlauf von oben, Auslauf von unten)

Muster	Fasern Art Feinheit Länge		FG	Dicke	Nadellänge	Einstich -dichte		chtiefe mm	
		in dtex	in mm	in g/m²	in mm	in mm	[St./cm²]	oben	unten
NV 24	PES	1,7	38	382	5,10	3,5"	100	6	6
SB 135	PES	1,7	_ 38	311	5,35	3,5"	100	66	5
_SB_136_	PES	1,7	38_	308	5,05	3,5"	200	44	3
SB 137	PES	1,7	38	312	6,85	3,5"	100	4	4
SB 138	PES	3,3	60	461	7,55	3,5"	100	6	5
SB 139	PES	3,3	60	337	6,75	3,5"	100	6	_5
SB 140	PES	3 <u>,</u> 3_	_ 60 _	343	6,35	3,5"	200_	44	3
SB 141	PES	3,3	60	336	7,75	3,5"	100	4	4


SÄCHSISCHES TEXTIL FORSCHUNGS INSTITUT e.V.

Vliesstoffkalibrierung

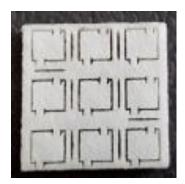
Thermofix-Kontaktheizofen (Fa. Schott & Meissner)

Quelle: Fa. Schott & Meissner

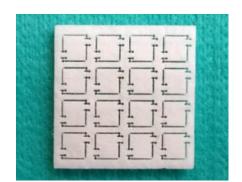
Muster	Fr Art	asern Feinheit	Länge	Flächen- masse	Dicke unkalibriert	Dicke kalibriert	Dicken- reduzierung
		in dtex	in mm	in g/m²	in mm	in mm	in %
_ NV 24 _	PES	1,7	_38_	382	5,10	4,93	33
AD 03	PES (70/30)	1,7	6/3	268	4,75	4,75	0
AD 04	PES (70/30)	1,7	6/3	277	5,01	4,98	1
AD 05	PES (70/30)	1,7	6/3	374	5,12	4,88	5
SB 135_	PES	1,7	_38_	311	5,35	4,29	20
SB 136	PES	1,7	_38	308	5,05	4,48	11
SB 137	PES	1,7	38	312	6,85	4,95	28
SB 138	PES	3,3	_60_	461	7,55	5,46	28
SB 139_	PES	3,3	60_	337	6,75	5,06	25
SB 140_	PES	3,3	_60_	343	6,35	5,22	18
SB 141	PES	3,3	60	336	7,75	5,10	34



SÄCHSISCHES TEXTIL FORSCHUNGS INSTITUT e.V.



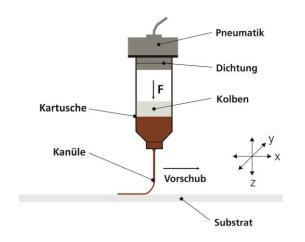
Entwurf eines TEG-Designs


- Laserstrukturierung
- optimale Flächenausnutzung
- geringere Widerstände

Double-Leg TEG: einfache Beinchenstruktur

Uni-Leg TEG:
Beinchenstruktur mit Schlitz

Druckpasten-Entwicklung


- Für Aufbau TEGs: zwei aktive Materialien, p- und n-leitende Halbleiter
- PEDOT:PSS (p-leitend) und Poly(Kx[Ni-ett]) (n-leitend) zeigten die besten elektrochemischen Eigenschaften
- ➤ PEDOT:PSS: Zugabe eines Zusatzlösungsmittels DMSO (Dimethylsulfoxid) in einer Zumischung von jeweils 1-10 m% zur Erhöhung der elektrischen Leitfähigkeit (3 fach)
- ➤ Poly(Kx[Ni-ett]): relativ hohe Stabilität gegenüber Sauerstoff und Luftfeuchte, Polymer weist relativ hohe elektrische Leitfähigkeit und hohe Seebeck-Koeffizienten auf → Monomerstruktursynthese FS 1
- beide Polymere waren äußerst flexibel (biegsam nach Druck)

Druckprozess

 Druck von PEDOT:PSS und Poly(Kx[Ni-ett])-Paste mit einem Dispenser-Drucker (Fa. Musashi)

Quelle: Diplomarbeit Ulrich, T. [TU Dresden, 2016]

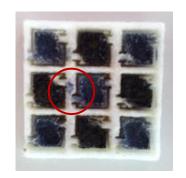
Geeignete Parameter:

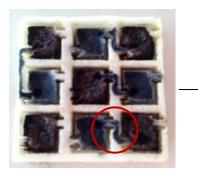
Druck: 500 kPa

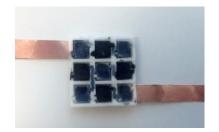
Druckgeschwindigkeit: 10 mm/s

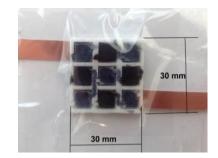
Druckhöhe: 0,24 mm

Nadeldurchmesser: 0,254 mm

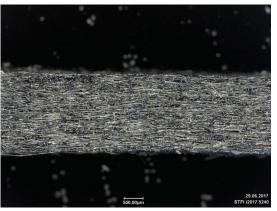

Trocknung 5-10 min bei 130 °C

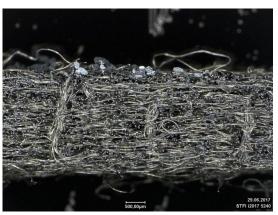

SÄCHSISCHES TEXTIL FORSCHUNGS INSTITUT e.V.


Herstellung eines TEG-Moduls



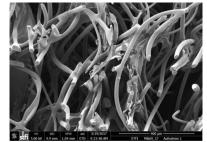
Druck des Kontaktierungsmaterials auf die Steg


Verkleben der Edelstahlbänder für den Messgerätkontakt und Verkapselung des TEG

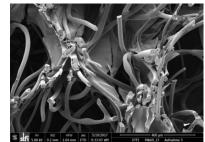


SÄCHSISCHES TEXTIL FORSCHUNGS INSTITUT e.V.

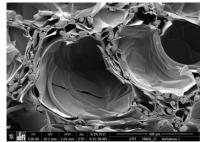
- REM-Aufnahmen von Vliesstoffen mit Polymerpasten
- Beurteilung Tintenverteilung entlang der Nadelkanäle, den Zwischenräumen und an Fasern



SÄCHSISCHES TEXTIL FORSCHUNGS INSTITUT e.V.



REM-Aufnahmen von Vliesstoffen mit untersch. Polymer-Massen-Anteil


p-Polymer

20 % PEDOT:PSS

32 % PEDOT:PSS

54 % PEDOT:PSS


n-Polymer

35 % Poly[K_x(Ni-ett)]

41 % Poly[K_x(Ni-ett)]

61 % Poly[K_x(Ni-ett)]

TEG-Demonstrator 100 x 100 mm

- Erhalt der Flexibilität der bedruckten TEGs
- Materialverbund beständig gegenüber DMSO, MeOH, N-Methylformamid
- TEG-Double-Leg-Modul (30 x 30 mm²) → bei ΔT= 140 K gemessener Widerstand von 5 kOhm und Ausgangsleistung von 9 nW
- TEG-Uni-Leg-Modul (30 x 30 mm²) → bei ΔT= 120 K gemessener Widerstand von 200 kOhm und gemessene Ausgangsleistung von 0,29 μW
- Extrapoliertes Ergebnis Modul (300 x 300 mm²)
 → Leistung von 29 µW → kleine LED-Lampe

SÄCHSISCHES TEXTIL FORSCHUNGS INSTITUT e.V.

	Nr.	Typ/ Substrat	Innenwiderstand des Moduls vor/ nach dem Test in Ohm	Temperatur Differenz ∆T in K	Spannung (bei ∆T= 20) in mV	Leistung im Temperatur- intervall 10 °C – 70 °C in mW	Beste Leistung in mW
	1	Double-Leg/	106.900 / 110.000	20-130	3,9	3,5E-07	1,5E-06
_		Kapton				(20°C-70°C)	(bei ∆T = 100)
2	2	Double-Leg/	21.110 / 73.110	20-140	0,73	1,4E-07	3,3E-07
		Vliesstoff					(bei ∆T = 140)
	3	Double-Leg/	25.100 / 27.100	20-140	1,1	4,4E-07	2,6E-06
		Vliesstoff					(bei ∆T = 140)
-	4	Double-Leg/	5.720 / 8.520	20-140	1,62	1,5E-06	8,4E-06
		Vliesstoff					(bei ∆T = 140)
	5	Uni-Leg/	68,4 / 70,2	20-125	-0,7	3,1E-05	2,9E-04
		Vliesstoff					(bei ∆T = 120)
(6	Double-	2.140 / 2.670	20-140	1,2	5,8036E-06	5,0013E-0,5
		Leg/Vliesstoff					(bei ∆T = 140)

SÄCHSISCHES TEXTIL FORSCHUNGS INSTITUT e.V.

Nr.	Typ/ Substrat	Innenwiderstand des Moduls vor/ nach dem Test in Ohm	Temperatur Differenz ∆T in K	Spannung (bei ∆T= 20) in mV	Leistung im Temperatur- intervall 10 °C – 70 °C in mW	Beste Leistung in mW
1	Double-Leg/	106.900 / 110.000	20-130	30	To	n 1
	Kapton			- ccallt	10	י אנ
2	Double-Leg/	21.110 / 72	TEG	-Effekt		lop ↓
	Vliesstoff		150	, —	- 107	loh ↑
3	Double-Leg/	25.1		、 Ľffiフl	enz •	00
	Vliesstoff		THU	3-Effizi		(bei ∆T = 140)
4	Double-Leg/	5.72		1,62	1,5E-06	8,4E-06
	Vliesstoff					(bei ∆T = 140)
5	Uni-Leg/	68,4 / 70,2	20-125	-0,7	3,1E-05	2,9E-04
	Vliesstoff					(bei ∆T = 120)
6	Double-	2.140 / 2.670	20-140	1,2	5,8036E-06	5,0013E-0,5
	Leg/Vliesstoff					(bei ∆T = 140)

SÄCHSISCHES TEXTIL FORSCHUNGS INSTITUT e.V.

Anwendungen

... bisher

- Raumsonden (in Kombination mit Radioisotopenbatterien)
- energieautarke Sensornetzwerke zum Betrieb von Messsensoren
- Petroleumlampen, Holzkohlegrills

... neue Anwendungsfelder

- in Autositze integrierte Temperaturregelungen
- Kraftwerke, Rechenzentren und industrielle Fertigungseinrichtungen
- an Rohrleitungssystemen
- an Innenseiten konkav geformter Kühlturmwänden
- Smart Textiles (z.B. Mobilladegeräte, Sensoren zur Gesundheitsüberwachung)

SÄCHSISCHES TEXTIL FORSCHUNGS INSTITUT e.V.

Copyright: STFI www.stfi.de

Zusammenfassung

- Weiterentwicklung intrinsisch leitfähiger Polymere als thermoelektrisches Drucksubstrat
- Entwicklung geeigneter Vliesstoffstrukturen für Tiefendruck:
 - ➤ thermisch verfestigter Airlaid-Vliesstoff
 - > vernadelter Krempelvliesstoff
- Voluminösität des Vliesstoffes unter Beibehaltung der Materialflexibilität
- Materialverbund ermöglicht hohe Toleranz
 - gegenüber mechanischen Schwingungen
 - > gegenüber thermischen Zyklen
- Anpassung Auftragsverfahren (Dispenserdruck) für gleichmäßiges Druckergebnis
- Erfolgreiche Kontaktierung der n- und p-leitenden Tinten
- Entwurf eines geeigneten TEG-Designs
- funktionstüchtiger Demonstrator → Nachweis thermoelektrischer Effekt

Danksagung

Das IGF-Vorhaben 18165 BR / 1 der Forschungsvereinigung DECHEMA e.V. Gesellschaft für Chemische Technik und Biotechnologie e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt am Main wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und – entwicklung (IGF) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

SÄCHSISCHES TEXTIL FORSCHUNGS INSTITUT e.V.

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Danke für Ihre Aufmerksamkeit!

Sächsisches Textilforschungsinstitut e.V.

Annaberger Straße 240 09125 Chemnitz

Telefon: +49 371 5274-0 Telefax: +49 371 5274-153 Geschäftsführender Direktor: Dipl.-Ing.-Ök. Andreas Berthel

E-Mail: stfi@stfi.de Internet: www.stfi.de

SÄCHSISCHES TEXTIL FORSCHUNGS INSTITUT e.V.

