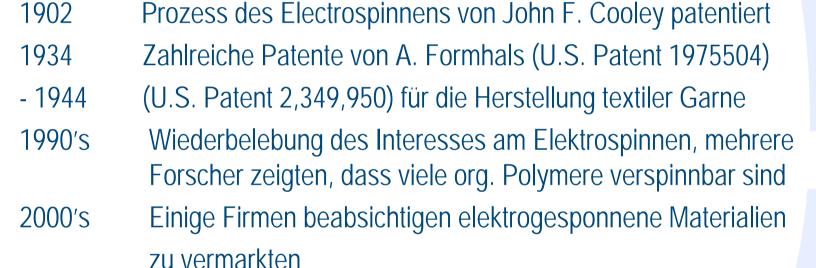
- Technologie und Möglichkeiten -

Dipl.-Ing. Chem. (FH) Johanna Spranger (STFI e.V.)

Dipl.- Ing. Andy Schuffenhauer (Norafin Industries (Germany) GmbH)

- Technologie und Möglichkeiten -

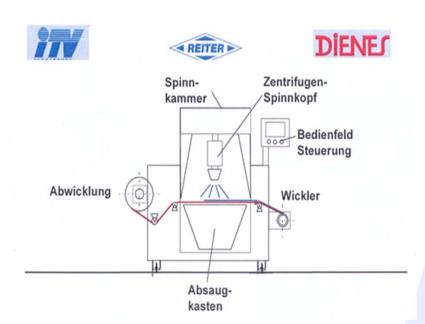
- 1. Historie
- 2. Electrospinning Arten
 - Zentrifugenspinnen
 - Nozzle Electrospinning
 - Nozzle-less Electrospinning
- 3. Vorstellung Nanospider NS LAB 500
 - Technische Daten
 - Verspinnbare Polymere
 - Wichtige Einflussgrößen
- 4. Potentielle Anwendungsgebiete



SÄCHSISCHES TEXTIL FORSCHUNGS INSTITUT e.V.

1. Historie

2005

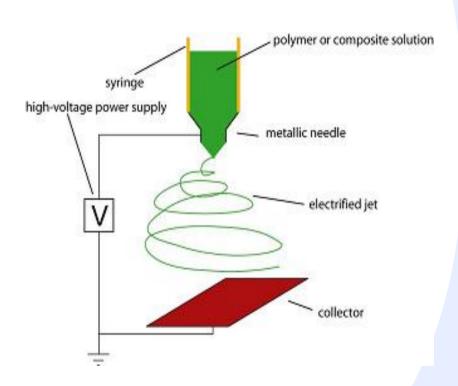


Elmarco kommerzialisiert die erste Elektrospinnausrüstung

- Technologie und Möglichkeiten -

2. Electrospinning Arten

- Zentrifugentechnologie
- Pilotanlage mit 1 m Arbeitsbreite
- 3 Spinnköpfe;
 30.000 U/min; 20 m/min
- Faserdurchmesser
 ca. 80 nm bis 500 nm
- Flächenmasse
 0,1 g/m² bis 30 g/m² je
 Passage
- Nicht wasserlösliche Polymere wie Polyamide, PAN, PES, PVA, PUR, m/p-Aramide



. . .

- Technologie und Möglichkeiten -

Nozzle Electrospinning

- Spinndüse / Nadel / Pipette verbunden mit einem HV-Netzteil
- Polymerlösung oder Schmelze wird konstant aus der Nadelspitze gefördert und am Kollektor abgelegt
- Höherer Durchsatz durch Verwendung einer Düsenreihe

Nozzle-less Electrospinning

- Polymermoleküle in spezifischem Lösungsmittel gelöst
- Anlegen von Hochspannung zwischen zwei Elektroden
- Polymerlösung wird aufgeladenen
- Elektrostatische Kräfte überwinden die Oberflächenspannung
- Am kritischen Punkt bricht aus der Oberfläche ein geladener Flüssigkeitsstrom
- Nanofasern legen sich auf Substrat ab

- Technologie und Möglichkeiten -

3. Vorstellung des Nanospider NS LAB 500

Technische Daten

NS LAB 500	
Zahl der Spinnelektroden	1
Spinnelektroden Breite	500 mm
Max. Breite des Substrats	600 mm
Liniengeschwindigkeit	0,13 - 1,5 m / min
Elektrodendrehzahl	1 - 16 U/ min
Füllmenge	20 - 400 ml
Laufzeit pro Füllung	bis zu 20 min
Hochspannung	bis 80 kV
Elektrodenabstand	70 - 210 mm
Externe Belüftung	150 m³ / h

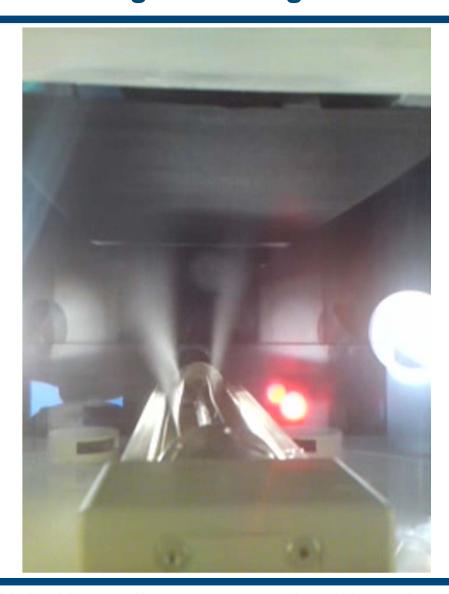
Verspinnbare Polymere

Organische	Anorganische	Metallische	Biopolymere
PA6	TiO ₂	Pt	Gelatine
PA6/12	SiO ₂	Cu	Chitosan
PAI (Polyamidimid)	Al ₂ O ₃	Mn	Collagen
PAA (Polyaramid)	ZnO		PLA (Polymilchsäure)
PUR (Polyurethan)	Li ₄ Ti ₅ O ₁₂		PCL (Polycaprolactam)
PES (Polyethersulfon)	ZrO ₂		
PVA (Polyvinylalkohol)			
PAN (PolyacryInitril)			
PEO (Polyethylenoxid)			
PS (Polystyrol)			
PVDF (Polyvinylidenfluorid)			

Prozessvariablen

Spinnlösung	Substrat	Equipment Parameter	Umgebung
Polymerart	Material	Feldstärke	Temperatur
Lösungsmittel	Zusammensetzung	Elektrodenabstand	Luftfeuchte
Viskosität	Dicke	Lösungsdurchsatz	Luftstrom
Konzentration	Struktur	Substratgeschwindigkeit	
Oberflächen- spannung	Leitfähigkeit	Elektrodendrehzahl	
Leitfähigkeit	Veredlung		
Flüchtigkeit			
Additive			

Verwendbare Elektroden



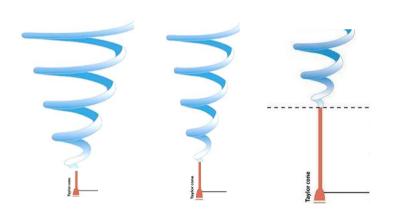
Video

- Technologie und Möglichkeiten -

grundlegende Anforderungen an die Spinnlösung:

Typische Polymerkonzentration: 5 - 25 %

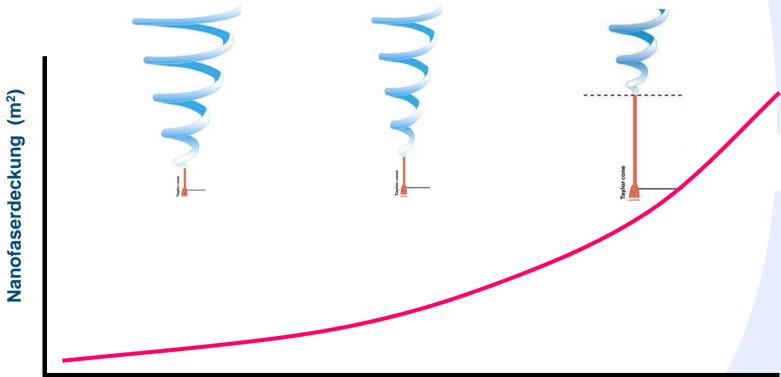
Oberflächenspannung: < 0,05 N/m


Dynamische Viskosität:
 60 - 7000 mPa*s

Leitfähigkeit: 0,01 µS/cm - 10 mS/cm

Abhängigkeit der Faserfeinheit von der Lösungskonzentration

Lösungskonzentration (wt %)


- Technologie und Möglichkeiten -

Abhängigkeit der Bedeckung von der Lösungskonzentration

Konzentration/Viskostät

- Technologie und Möglichkeiten -

Einfluss der relativen Luftfeuchte

- Faserdurchmesser
- Durchsatz / anwendbare Feldstärke
- Porengrößenverteilung
- Anlösen der Fasern (wasserlösl. Polymere, PVA)
- Wet spots (wasserlösl. Polymere, PVA)
- Electrospinning (einige Polymerlösungen bilden im elektr.
 Feld erst Fasern unter einem bestimmten RF Wert aus)

Die Bedeutung der RF ist nicht für alle Polymere gleich, da sie nicht alle die gleichen triboelektrischen Eigenschaften und Hydrophilie / Hydrophobie aufweisen

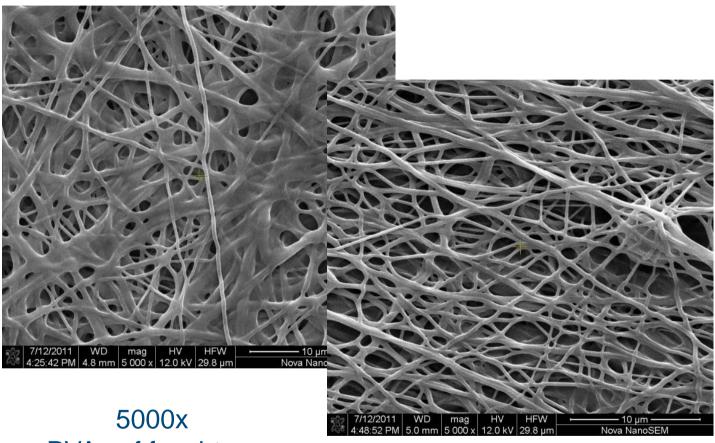
Auswirkungen der RF

Polymer	RF (%) @ RT	Auswirkung
PA6	25 – 50*	Faserdruchmesser werden mit steigender RF kleiner
PVDF	20 – 50*	Faserdurchmesser werden mit steigender RF größer
PAN/PES	15 - 30	Über 30% RF kein Electrospinning möglich, keine Faserausbildung

In der Regel sind 60% RF obere Grenze für viele Polymere

PAN auf Aramid/Viskose

PVA auf **PET**


PA6 auf Kermel

FORSCHUNGS
INSTITUT e.V.

KOMPETENZ
ZENTRUM

VIJESSTOFFE

stfi

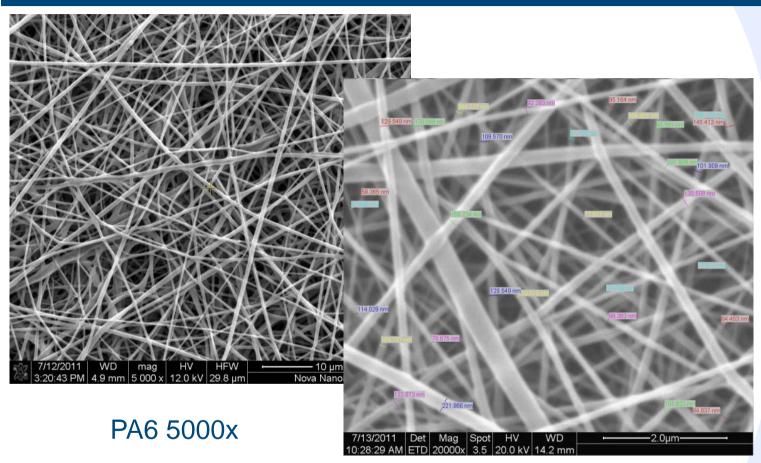
SÄCHSISCHES

TEXTIL

Norafin &

5000x PVA auf feuchtem Substrat

5000x PVA auf trocknem Substrat


Eigenschaften eines PA6 Nanofaservlieses auf Filterpapiersubstrat

Polymer	12% PA6
Mittlere Faserdurchmesser	100 ± 50 nm
ca. Flächengewicht	0,08-0,1 g/m ²
Druckverlust (5m/min flow speed)	130 Pa
Abscheidegrad (0,3 mm NaCl)	82%

PA6 20000x Feinheitsmessung an 30 Fasern ø 100nm

SÄCHSISCHES TEXTIL FORSCHUNGS INSTITUT e.V.

Vergleich der Spinntechnologien

	Spinnvlies	Meltblown	Elektrospinnen
Faserdurchmesser	12.000 - 20.000 nm	700 - 2.000 nm	50 - 700 nm
Polymerdurchsatz	280.000 cm³/(h*m)	84.000 cm³/(h*m)	1 cm³/(h*m)

- Technologie und Möglichkeiten -

NanospiderTM Produktionslinie NS 8S1600U

Anzahl der Spinning-Einheiten:

Anzahl der Spinnköpfen:

Arbeitsbreite: 1,6 m

Liniengeschwindigkeit: bis 20 m/min

Faserdurchmesser: 50 nm bis 150 nm

Flächenmasse: 0,03 g/m²

- Technologie und Möglichkeiten -

4. Potentielle Anwendungsgebiete

- Akkustikvliesstoff
- Filtermedien
- Schutzbekleidung
- Medizintextilien
- Tissue Engineering
- Membranen

Vielen Dank für Ihre Aufmerksamkeit!

Sächsisches Textilforschungsinstitut e.V. Postfach 13 25 D-09072 Chemnitz

Geschäftsführender Direktor: Dipl.-Ing.-Ök. Andreas Berthel

E-Mail: stfi@stfi.de

Telefon: +49 3 71 52 74-0 Telefax: +49 3 71 52 74-1 53

Internet: www.stfi.de

