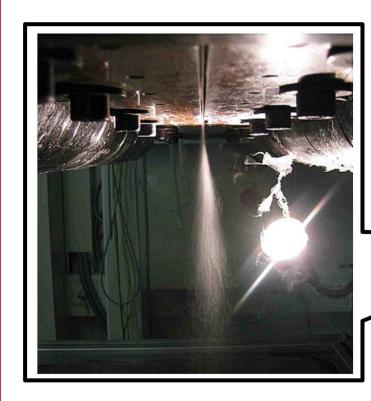


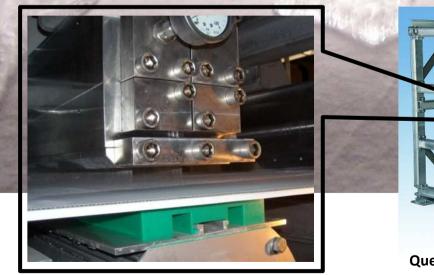
ITV Denkendorf

Hochtemperatur-Filtermedien auf Basis der Meltblow-Technologie

C. Rieger, M. Dauner, A. Seeberger (Irema), A. Jung (Irema), H. Planck



Feinstfaserherstellung am ITV Denkendorf: Die 500mm breite Meltblow-Anlage



Wasserstrahlverfestigungsanlage am ITV Denkendorf

- 500mm Arbeitsbreite
- Zukünftig inline mit Meltblow-Anlage
- Verfestigung von Feinstfasern
- Kaschierung textiler Flächen
- Mit freundlicher Unterstützung des Landes Baden-Württemberg
- Installation durch Trützschler Nonwovens GmbH

Hochtemperatur-Filtermedien

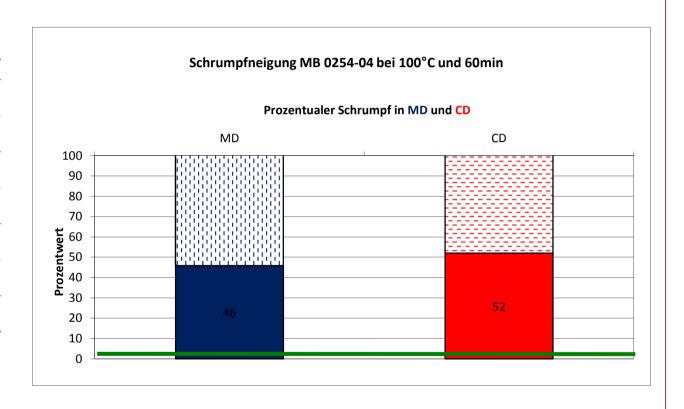
Geeignete thermoplastische Kunststoffe für Hochtemperaturanwendungen:

Polymerbezeichnung	Schmelzpunkt [°C]	Vorteile	Problematik
Polybutylenterephthalat (PBT)	220	preisgünstig, hohe Verfügbarkeit, einfache Verarbeitung im Meltblow	keine ausreichende Temperaturstabilität T _{max} = 150°C
Polyimid (PI)	> 300	hohe Temperaturstabilität	Anspruchsvolle Verarbeitung Bislang keine Feinfaservliese sehr teuer
Polyphenylensulfid (PPS)	285	hohe Temperaturstabilität	Anspruchsvolle Verarbeitung teuer
Polytetrafluorethylen (PTFE)	327	hohe Temperaturstabilität	Anspruchsvolle Verarbeitung sehr teuer
Polyethylenterephthalat (PET)	> 250	sehr preisgünstig, sehr hohe Verfügbarkeit, temperaturstabil bis 200°C einfache Verarbeitung	Polymer neu im Meltblow Material schrumpft stark unter Temperatureinfluss

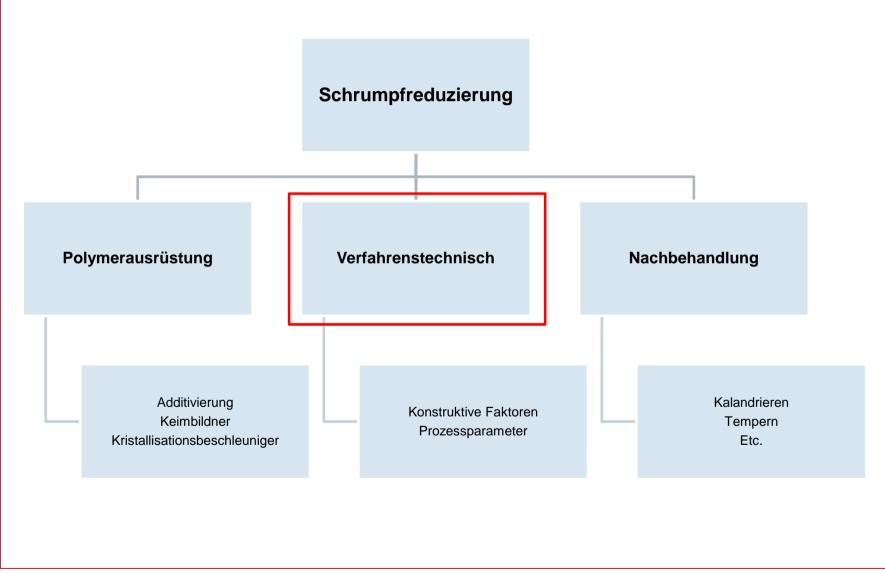
ZIM-Projekt: "Entwicklung eines Meltblow-Verfahrens für Hochtemperatur-Filtermedien"

- Gefördert durch das Bundesministerium für Wirtschaft und Technologie
- ZIM Zentrales Innovationsprogramm Mittelstand
- In freundlicher Zusammenarbeit mit der Irema-Filter GmbH
- Ziel: Schrumpfarme Meltblow-Vliesstoffe aus PET für die Heißgasfiltration bis 200°C
 Schrumpf in MD und CD < 3%

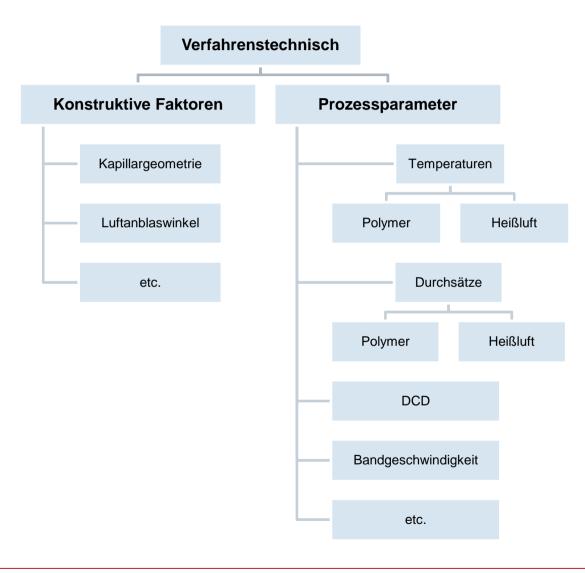
aufgrund eines Beschlusses des Deutschen Bundestages



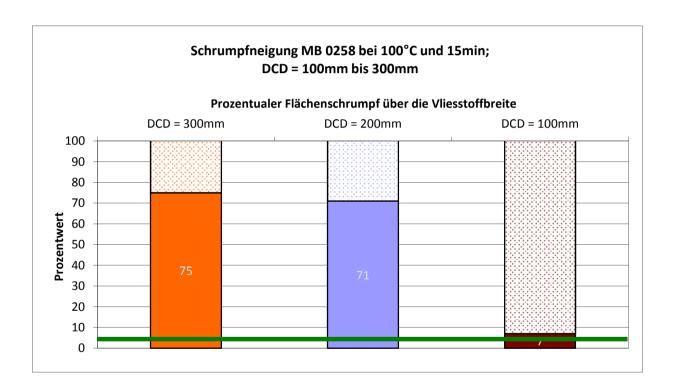
Versuchsnummer	MB 0254-04
Polymer	Invista RT 12
Schmelzetemperatur [°C]	288
Polymerdurchsatz [g/h°/min]	0,03
Heißlufttemperatur [°C]	300
Heißluftdurchsatz [Nm³/h]	220
DCD [mm]	200
Bandgeschwindigkeit [m/min]	0,5



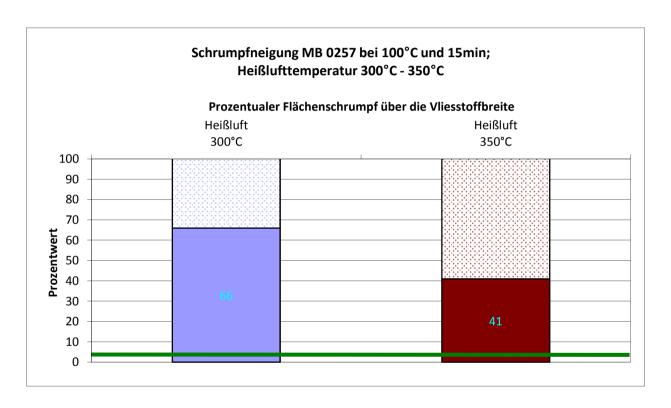
Starker Schrumpf über die komplette Vliesstoffbreite in Längs- und Querrichtung, CD > MD


Mögliche Einflussfaktoren auf das Schrumpfverhalten

Schrumpfbestimmung von Meltblow-Vliesstoffen aus PET

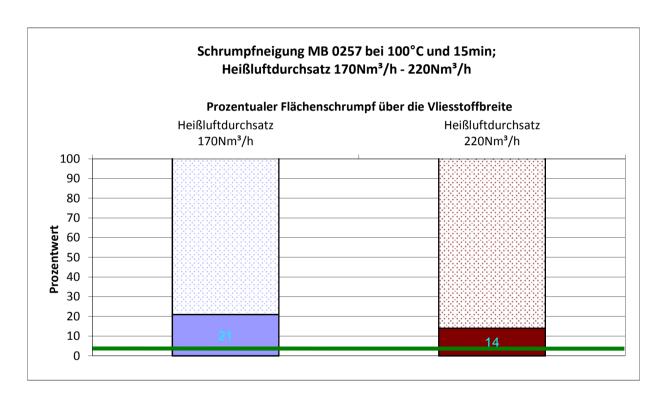

- Trockenschrank, 100% bzw. 50% Umluft
- An Schnur hängende Proben mit 300mm (MD) x 50mm (CD)
- Vliesstoffproben Rechts, Mitte und Links
- Vorerst Messungen bei Niedertemperatur 100°C, 15min, falls geringer Schrumpf
- Weitere Messung bei Hochtemperatur 200°C (180°C), 15min
- Zusätzliche Einzelmessung über 60min und über 24h bei 200°C (180°C)

Einfluss der DCD auf den Schrumpf



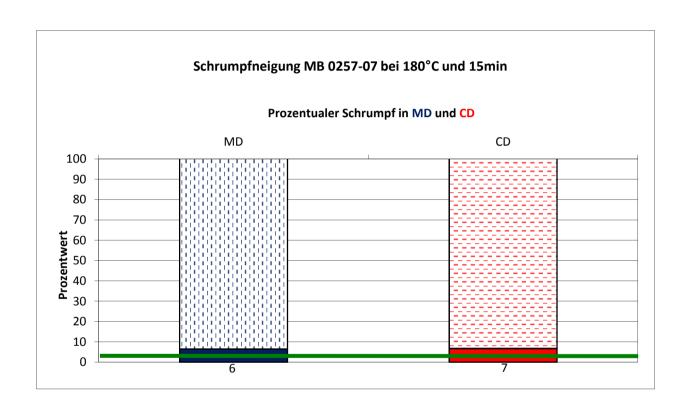
Bei einem sehr geringen Abstand zwischen Düse und Ablageband kann der Schrumpf stark reduziert werden

Einfluss der Heißlufttemperatur auf den Schrumpf



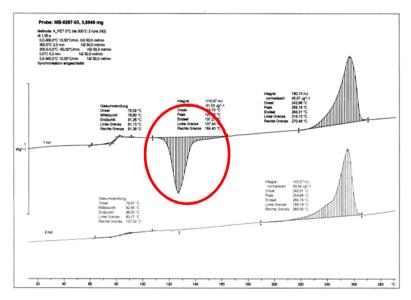
Eine Erhöhung der Heißlufttemperatur bewirkt eine signifikante Schrumpfreduzierung

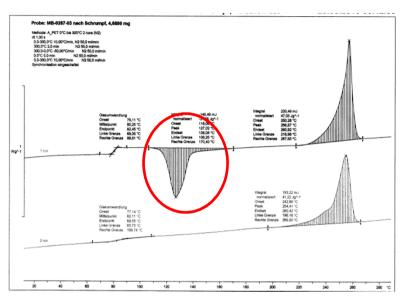
Einfluss des Heißluftdurchsatzes auf den Schrumpf



Bei einem höheren Heißluftdurchsatz nimmt die Schrumpfneigung der Vliesstoffe ab

Optimierung der Prozessparameter

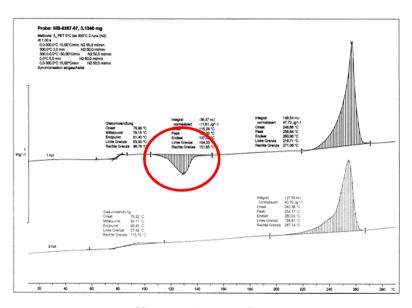


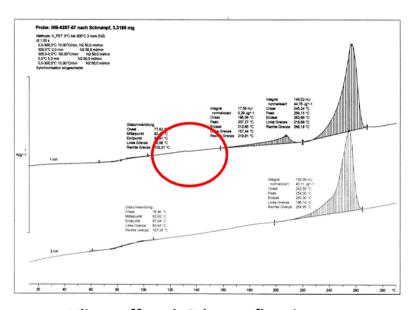

Bei optimierten Prozessbedingungen kann die Schrumpfneigung erheblich reduziert werden

DSC-Analysen von Vliesstoffen vor und nach dem Schrumpf

Vliesstoff vor Schrumpfbestimmung

Vliesstoff nach Schrumpfbestimmung

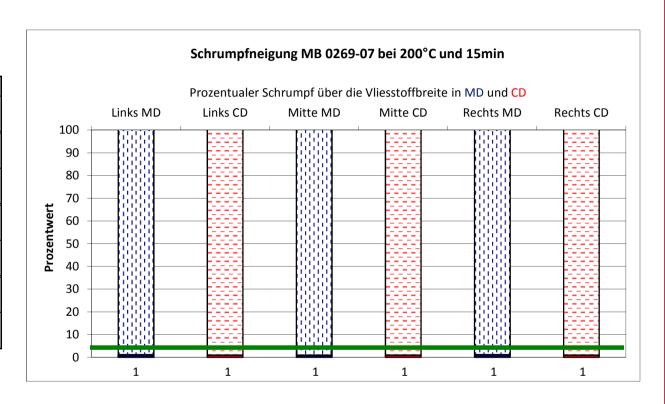

Stark schrumpfender Vliesstoff:


Deutliche Rekristallisation sowohl vor als auch nach der Schrumpfbestimmung spricht für geringen Kristallisationgrad des Vliesstoffes

DSC-Analysen von Vliesstoffen vor und nach dem Schrumpf

Vliesstoff vor Schrumpfbestimmung

Vliesstoff nach Schrumpfbestimmung



Vliesstoff mit leichtem Schrumpfverhalten: Hoher Kristallisationsgrad des Vliesstoffes

Schrumpfminimierung durch Nachbehandlung

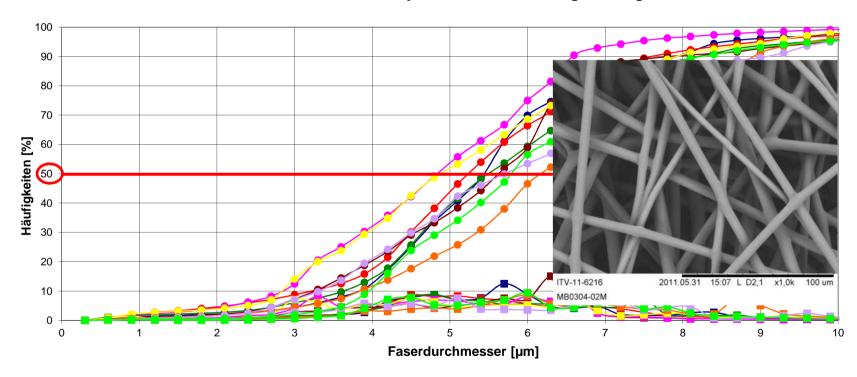
Versuchsnummer	MB 0269-05
Polymer	Advansa SB64I1
Schmelzetemperatur [°C]	277
Polymerdurchsatz [g/h°/min]	0,05
Heißlufttemperatur [°C]	300
Heißluftdurchsatz [Nm³/h]	140
DCD [mm]	150
Bandgeschwindigkeit [m/min]	0,25

Durch eine zusätzliche Nachbehandlung ist es uns heute möglich, nahezu schrumpffreie MB-Vliesstoffe aus PET herzustellen.

Aber Gefahr der Versprödung

Vergleich der Schrumpfneigung

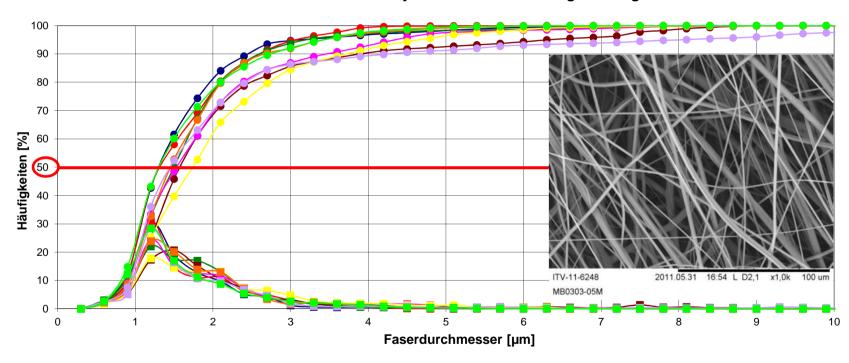
[Standardeinstellung]


[Optimierte Prozessparameter]

[Nachbehandlung]

Faserdurchmesserbereiche

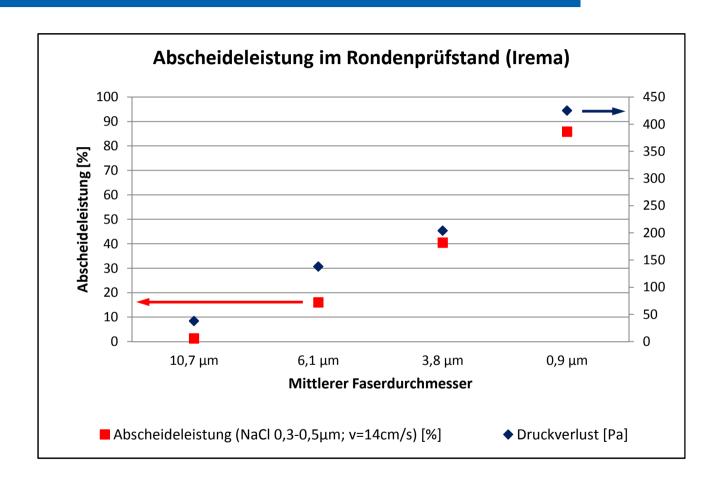
Relative sowie kumulierte relative Häufigkeitsverteilung der Faserdurchmesser, automatische Analyse bei 1000-facher Vergrößerung


Standardeinstellung:

Median der Faserdurchmesser zwischen 5μm und 6μm

Faserdurchmesserbereiche

Relative sowie kumulierte relative Häufigkeitsverteilung der Faserdurchmesser, automatische Analyse bei 1000-facher Vergrößerung



Feinfasereinstellung:

Median der Faserdurchmesser zwischen 1μm und 2μm

Filtrationseffizienz

Gute Abscheideleistung in Abhängigkeit des Faserdurchmessers, jedoch relativ hoher Druckverlust

Zusammenfassung

- Parameterauswahl beeinflusst das Schrumpfverhalten von PET-Vliesstoffen stark
- Entwicklung eines neuen Verfahrens zur Herstellung schrumpffreier PET-Vliesstoffe durch gezielte Nachbehandlung
- Faserdurchmesser und Flächengewicht sind einstellbar
 (im Projekt: Faserdurchmesser zwischen 1μm und 12μm sowie Flächengewichte von 30g/m² bis 100g/m²)
- Bei zu intensiver Nachbehandlung kann die Haptik der Vliesstoffe leiden, das Material wird spröde
- Gute Abscheideleistung bei feinem Faserdurchmesser, allerdings relativ hoher
 Druckverlust

Es ist möglich, nahezu schrumpffreie Meltblow-Vliesstoffe aus PET zu produzieren!

Danksagung

Für die finanzielle Unterstützung des **ZIM-Projektes KF2009117GZ9** danken wir dem **Bundesministerium für Wirtschaft und Technologie**. Die Förderung durch das BMWi erfolgt aufgrund eines Beschlusses des Deutschen Bundestages.

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Wir danken dem Projektträger AiF Projekt GmbH für die Betreuung des Projektes und Bayern Innovativ für die Unterstützung bei Antragstellung und Durchführung.

ITV Denkendorf

Vielen Dank für Ihre Aufmerksamkeit und einen guten Appetit!

