

Atmospheric Pressure Plasma A New Technology for Modifying Technical Textiles

Dr. Birgit Severich Freudenberg New Technologies KG

22. Hofer Vliesstofftage, 07.-08.11.2007

We are Part of the Freudenberg Group

Corporate Headquarters:

Freudenberg und Co. Kommanditgesellschaft 69465 Weinheim Deutschland

www.freudenberg.de

Employees 2006: 33.526

Turnover 2006: 5.053 Mio €

Organisation of the Freudenberg Group / Turn Over 2006

Parent Company: Freudenberg & Co.

Seals and Vibration Control Technology Business Area

Business Groups

Seals and Vibration Control Technology Europe

1075 Mio €

Seals and Vibration Control Technology America

986 Mio €

Seals and Vibration Control Technology China

96 Mio €

Vibracoustic Europe

451 Mio €

Burgmann Industries 359 Mio €

Nonwovens Business Area

Business Groups

Nonwovens 801 Mio €

Freudenberg Politex Nonwovens 216 Mio € Household Products Business Area

Business Group

Household Products 627 Mio €

Specialities and Others Business Area

Business groups

Chemical Specialities

470 Mio €

Building Systems

158 Mio €

Mechatronics

14 Mio €

IT-Services

51 Mio €

New Technologies

26 Mio €

Division Service Support 111 Mio €

Organisational Structure of Freudenberg New Technologies

Freudenberg New Technologies KG (FNT)

FNT

Management Support New Business Ideas Networking with Universities, Associations etc

Corporate Tasks

EU-, Berlin- Presence/Funding Cooperation Japan/USA/China ...

Freudenberg Forschungsdienste KG

Materials and Processing

Testing and Calculation

Patents and Brands

New Business Development

Internal Venturing

- New Business Projects
- Start Ups
 - FFCCT

External Venturing

- Fraunhofer VC
- Condias

Agenda

- Introduction
- Technical solution
- Application examples
- Summary

Plasma - The 4th Physical State of Matter

- Plasma is an ionized gas generated by applying energy to a volume of gas
- "Low temperature" plasma
 - energy is delivered by a high electric field
 - uniquely combines high chemical reactivity with ambient gas temperature operation

Idea

- Establish and commercialize the plasma technology for roll-goods in an industrialized, continuous, non-vacuum process
- Customize the surface characteristics of
 - nonwovens
 - technical textiles
 - polymer films and
 - membranes

while the bulk properties are left unaffected by the process

Atmospheric Pressure Plasma Advantages

- Combines atmospheric pressure plasma processing with liquid precursors
 - customized surfaces, bulk properties
 left unaffected
 - control over surface functionality
 - eco-friendly, continuous processing

atmospheric pressure

- continuous processing
- no vacuum equipment
- applicable to temperature and vacuum sensitive substrates

plasma processing

- energy efficient
- ambient temperature,
- high chemical reactivity
- environmentfriendly
- long-term stable effects

I liquid precursors

- unrivalled control over plasma coating chemistry and functionality
- wide range of precursors
- complex functionality possible
- high deposition rate

Customer Value

- Create novel products, or enhance the performance of existing products
- enter new markets, technology leadership

- Replace high-priced specialties by cost-saving modified commodities
- enhanced market penetration, increased margins leveraged by premium products

Replace polluting wet-chemical processing

process cost saving (less energy, water, waste, raw materials)
 environment, health and safety benefits

Agenda

- Introduction
- Technical solution
- Application examples
- Summary

The Processes

- Plasma activation
 - long-term stable hydrophilization and/or activation as a pretreatment of polymer and natural substrates prior to coating, dying, lamination and other adhesion processes
- Plasma functionalization
 preparation of polymer and natural surfaces for specific reactions
 (chemical affinity) by generation of functional chemical groups
- Plasma polymerization sub-micron highly functional layer deposition to get new performance coatings and finishing

The Technical Solution – I Activation / Hydrophilization

Dielectric Barrier Discharge (DBD)

- configuration: rod electrodes, grounded drum
- pressure: open perimeter atmospheric pressure
- process gas: air
- temperature: ambient temperature air cooled system
- substrate: roll-goods up to 3 mm thickness
- pilot line with 1000 mm width and 5-20 m/min

The Technical Solution – II Functionalization / Coating

- <u>A</u>tmospheric <u>Pressure Plasma Liquid</u>
 <u>D</u>eposition (APPLD)
 - configuration: parallel plates, helium atmosphere
 - pressure: open perimeter atmospheric pressure
 - temperature: ambient temperature air cooled system
 - chemistry: direct introduction of liquid precursor (aerosol) into the plasma zone
 - substrate: roll-goods up to 3 mm thickness
 - pilot line with 1000 mm width and 10-50 m/min

Equipment Platforms

Activation / Hydrophilization

Functionalization / Coating

Agenda

- Introduction
- Technical solution
- Application examples
- Summary

Added Value Products

Applications

Long-term Stable Activation: Battery Separators

- In NiMH rechargeable battery separators made from nonwoven PP or PP/PE are used
- Substrate is hydrophobic by nature, insufficient wetting with water based electrolytes
- Activation / hydrophilization without the need of any chemistry
 - excellent initial wettability
 - long-term stability at ambient condition shown for more than 18 month
 - durability after storage in 30 % KOH (70°C)

untreated

hydrophilic

	Initial wettability wickng rate after 10 min	Durability in KOH wicking rate after 30 min
A-Plasma	95-120 mm	40-60 mm
Huorination	10-20 mm	40-50 mm

Hydrophilic and Reactive Coatings

Features & results

- retention of molecular structure in poly(acrylic acid) coating:
 COOH rich
- low water contact angle

Benefits & applications

- high surface energy
- acid rich & very reactive
- water wicking, extra absorbency
- anti-fog
- easy take-up and good coverage for printing, coating, dyeing, etc

Oleophobic / Hydrophobic Coatings

Features & results

- retention of molecular structure in coating: long-chain CF_x and cyclic siloxanes
- large tetradecane and water contact angle
- AATCC standard oil rating > 4
- laundry durable

Benefits & applications

- oil & solvent repellency
- excellent stain resistance and easy-clean performance
- water repellent
- friction control
- low release force combined with high reusability

Oleophobic / Hydrophobic Coatings

Features & results

- retention of molecular structure in coating: long-chain CF_x and cyclic siloxanes
- large dodecane and water contact angle
- AATCC standard oil rating > 6
- laundry durable

Benefits & applications

- oil & solvent repellency
- easy clean
- water repellent
- friction control
- low release force combined with high reusability

Functionalized Textile Surfaces

- Polyester nonwoven with positively charged surface
 - basic functional groups, covalently bonded to the fibre surface
 - Positive Zeta Potential in aqueous media up to pH >8

Agenda

- Introduction
- Technical solution
- Application examples
- Summary

Summary

- Enables innovative products and processes
- Combines atmospheric pressure plasma processing with liquid precursors
- Delivers highly functional thin-film coatings for large area flexible substrates
- Industrialized continuous process
- Surface characteristics can be customized
- Bulk properties remain unaffected
- Process cost saving and environmental benefits

Benefits for our Customers

 Unique, customized, high value-added solutions for surface modifications

- product and process development for different customers
- pilot production

- incl. surface analysis expertise
- toll-manufacturing on smaller scale (1m width)
- scale-up and transfer to customer's production together with our Partner Dow Corning Plasma Solutions