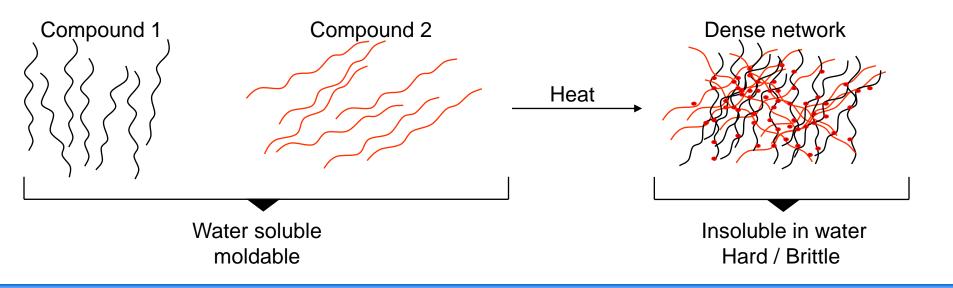


22. Hofer Vliestofftage 2007 / Nov. 7/8

Dr. Michael Kalbe

Polymers for Fiber Bonding: Expertise you can rely on

Overview on standard thermosets


- Properties of Acrodur[®]
- Curing behaviour
- Examples for typical Acrodur® applications

What are thermosets?

Thermosets consist of a dense network of macromolecules

Standard Thermosets are formed by thermal curing of low-molecular starting material like: **phenol** and **formaldehyde** or **urea** and **formaldehyde** or **epoxy resins** ...

...and Acrodur®!

What is Acrodur®?

1. Acrodur® solutions

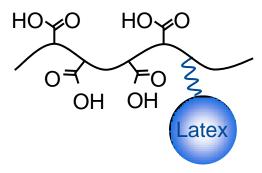
Acrodur® solutions consist of two components, dissolved in water

...a polycarboxylic acid:

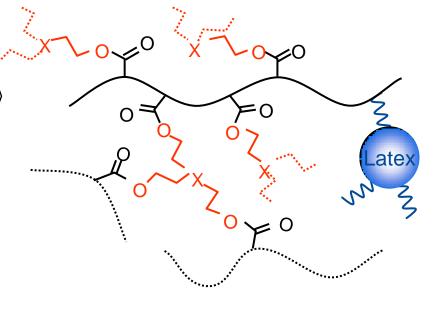
...and a polyalcohol:

...to form a polyester

What is Acrodur®?


2. Acrodur® dispersions

Acrodur® dispersions consist of two components, dissolved in water


...a **polycarboxylic acid**, modified with a **latex component**:

...to form a latexmodified **polyester**

...and a polyalcohol:

Both components react at temperatures above > 130 °C

- Overview on standard thermosets
- **■** Properties of Acrodur®
- Curing behaviour
- Examples for typical Acrodur® applications

The Acrodur® product portfolio

					The Chemical Company
Product		cteristic on / disp pH		Characteristics of cured polymer	Remarks
1st generation Acrodur®:Solutions					
Acrodur® 950L	50	3-4	900-2500 (M _W ≈ 80 t g/mol)	Stiff-duroplastic	
Acrodur® DS 3530	50	2,5-4,5	150-300 (M _W ≈ 12 t g/mol)	High heat resistance	
2nd generation					
Acrodur®:					
Dispersions					
Acrodur® DS 3515	50	2,5-4,5	300-1400	Hydrophobic Full performance	Stiff-duroplastic film
Acrodur [®] DS 3558	50	2,5-4,5	300-1400	achievable at lower curing temperatures	Flexible duroplastic film
					7

Acrodur® is a class of formaldehyde-free duroplastic acrylic resins and dispersions

Product properties

- 1K-system
- Aqueous solutions or dispersions of modified polyacrylic acid with polyalcohol
- Acidic media, pH = 3.5 ± 1
- Contains no formaldehyde or phenol

Processing properties

- Can be diluted with any amount of water
- Can be used in mixtures with other dispersions
- Can be applied by spraying, rolling or soaking
- Shows good tack
- Forms film at room temperature
- Is thermoplastic before curing
- Can be thermically crosslinked
- Can be cured at temperatures between 130-200 °C

Properties after curing

- Duroplastic
- Water- resistant

Properties of Acrodur® solutions

Acrodur® 950 L and Acrodur® DS 3530

Reactive acrylic resins

Storage stability very good (1-K system)

Miscibility with water unlimited

Solid content [%] 50

pH ca 3,5

Viscosity [mPas]

Acrodur[®] 950 L ca 1.200 Acrodur[®] DS 3530 ca 200

Molecular weight [g/mol]

Acrodur® DS 3530 ca 12.000 Acrodur® 950 L ca 80.000

Properties of Acrodur® dispersions

Acrodur® DS 3515 und Acrodur® DS 3558

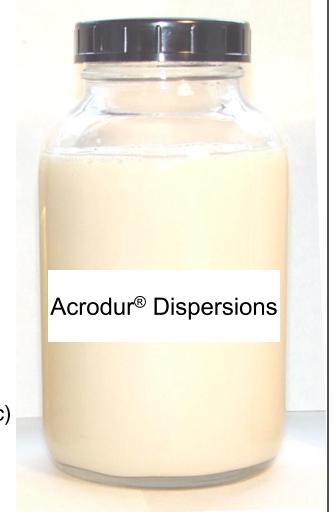
Reactive acrylic dispersions

Storage stability very good (1-K system)

Miscibility with water unlimited

Solid content [%] 50

pH ca 3,5

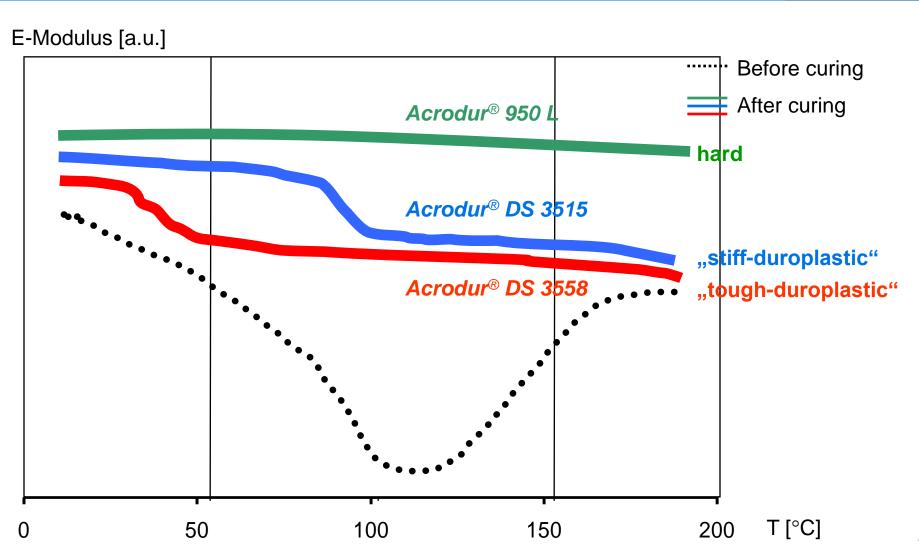

Viscosity [mPas] ca 700

Molecular weight high

Latex properties

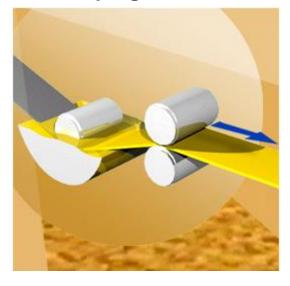
Acrodur® DS 3558 T_g : 25 °C (flexible duroplastic) Acrodur® DS 3515 T_g : 100 °C (stiff duroplastic)

Particle size Latex ca 80 nm

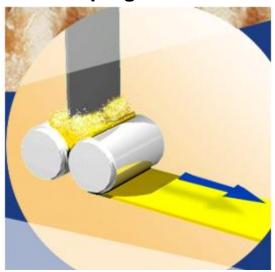


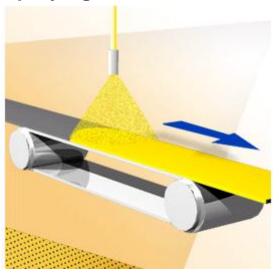
- Overview on standard thermosets
- Properties of Acrodur®
- Curing behaviour
- Examples for typical Acrodur® applications

Hard to tough-duroplastic properties can be obtained by using the approbiate Acrodur® binder


- Overview on standard thermosets
- Properties of Acrodur[®]
- Curing behaviour
- Examples for typical Acrodur® applications

Examples for use of Acrodur®


Application methods


Bath impregnation

Foam impregnation

Spraying

Examples for use of Acrodur®

Binders for wood and natural fibers

Characteristics of natural fiber composites

Substrates

- Wood fibers
- Seed fibers: Cotton
- Bast fibers: jute, hemp, kenaf, flax...

Main application areas

 Automotive (ca 5 – 10 kg natural fibers are used in each car)

Main products

- Door trims
- Rear window shelves
- Sound isolation parts
- Seat shells...

Examples for use of Acrodur®

Binders for glass and polyester nonwovens

Characteristics of synthetic fiber composites

Substrates

- Synthetic fibres as PA, PES, ...
- Cellulosic fibres
- Glas fibres

Main application areas

- Abrasives
- Flooring
-

Main products

- Abrasive materials
- grits coated PET
-

Summary

Acrodur[®] ...

- Aqueous binder system
- Does not contain critical components like Phenol or Formaldehyd
- Becomes duroplastic when thermally cured
- Acrylic based binder for
 - Wood and bast fibers
 - Nonwovens from glass, polyester, polyamide
 - ...and a variety of other substrates

... an alternative?

Key features for discussion ...

Benefits (versus PF resins)

- Formaldehyde and Phenol free
- No formaldehye will be generated during curing
- B stageable (thermoplastic intermediates)
- Exhaust fume from curing reaction is water
- High heat resistance
- Excellent storage stability
- Runnability as standard acrylic systems
- Mixible with acrylic dispersions for property adjustment